
Design Patterns

• Design patterns are known solutions for

common problems. Design patterns give

us a system of names and ideas for

common problems.

• What are the major description parts?

• Design Patterns consist of the following parts:

• - Problem Statement

• - Solution

• - Impact

• ---

• There are several Levels and Types of the

Design Patterns.

What Levels and Types do you know?

Design Patterns Descriptions

• There are different types and levels of design patterns. For example, the
MVC is the architectural level of design pattern while the rest of the
patterns from the list above are component level design patterns.

• The basic types are Behavior, Creational, Structural, and System
design patterns. Names are extremely important in design patterns; they
should be clear and descriptive.

• More types: Enterprise and SOA Design Patterns

Design Patterns Levels and Types

Christopher Alexander – The first book on Design Patterns

Classics: "Design Patterns: Elements of Reusable Object-

Oriented Software" by Erich Gamma, Richard Helm, Ralph

Johnson, John Vlissides (GOF)

Among other good books: “Integration-Ready Architecture

and Design or Software … and Knowledge Engineering”

• What: Application

development or even

modification require longer

and longer projects

• Why: Growing applications

become more complex and

rigid; too firm and inflexible in

spite of the name – Software

Here is an example of creating a new

Design Pattern

Special efforts are needed

Industry Lessons Learned

Design Patterns

Business-Driven Architecture

• How can technology be designed to

remain in alignment with changing

business goals and requirements?

Technology

Business

Technology

Business

Good Alignment

Bad Alignment

Duplications

Code branches

Maintenance Cost

Business-Driven

Architecture
• Solution

• Business and architecture analysis is
conducted as collaborative efforts on a
regular basis

• Impact

• To keep technology in alignment with the
business that is changing over time, it will
require a commitment in time and cost to
govern

Design Pattern - MVC
• MVC (Model – View – Controller) is well known pattern

• Name – MVC

• Problem – Complex object involves user interface and data. Need to

simplify structure

• Solution – Data in one part (Model), user View in another part (View),

interaction logic in a third part (Controller)

– Model maintains state. Notifies view of changes in state.

– Controller uses state information (in Model?) and user request to

determine how to handle request, tells view what to display

– View must correctly display the state of the Model

• Consequences

– Allows "plug in" modules – eg. swap out Model to allow different ways

of holding data

– Requires separate engineering of the three parts, communication

between them through interfaces

Controller

Model View

Factory Method

• Problem – Need to create a family of similar but

different type objects that are used in standard ways.

• Solution – Creator class has a "getter" method which

instantiate the correct subclass, i.e. ConcreteProduct,

Subclass is used through generic interface, i.e.

Product

• Impact – Extra time for analysis and modeling

Factory Method & Servlet Best Practices

New services can be added run time as new JSPs/ASPs or Java™/.NET classes

//serviceName and serviceDetails are to be populated

// by servlet doPost() , doGet() or service() methods

String serviceName = request.getParameter(“service”);

Hashtable serviceDetails = getServiceDetails();

Service service = // known or new service

(Service) Class.forName(serviceName).newInstance();

String content = service.run(serviceDetails);

response.setContentType(“text/html"); // “application/xsl” and etc.

response.getWriter().println(content);

XML based Service API allows us to describe any existing and future service

<ServiceRequest service=“Mail” action=“get”>

<Param><paramName1=…></Param>

</ServiceRequest>

We can find both Dispatcher and Factory patterns in this example. This approach makes it

possible to create a unified API for client – server communications. Any service (including

new, unknown design time services) can be requested by a client without code change.

Design Pattern

Canonical Data Model

• How can services be designed to avoid

data model transformation?

• Problem

• Services with disparate models for similar

data impose transformation requirements

that increase development effort, design

complexity, and runtime performance

overhead.

Canonical Data Model

• Solution

• Data models for common information sets

are standardized across service contracts

within an inventory boundary.

• Application

• Design standards are applied to schemas

used by service contracts as part of a

formal design process.

Canonical Data Model

• Principles

• Standardized Service Contract

• Architecture

• Inventory, Service

http://serviceorientation.com/serviceorientation/standardized_service_contract
http://serviceorientation.com/index.php/serviceorientation/index

Design Pattern

Canonical Protocol
• How can services be designed to avoid protocol

bridging?

• Problem

• Services that support different communication

technologies compromise interoperability, limit

the quantity of potential consumers, and

introduce the need for undesirable protocol

bridging measures.

Canonical Protocol
• Solution

• The architecture establishes a single

communications technology as the sole or

primary medium by which services can

interact.

• Application

• The communication protocols (including

protocol versions) used within a service

inventory boundary are standardized for all

services.

Design Pattern

Concurrent Contracts
• How can a service facilitate multi-

consumer coupling requirements and

abstraction concerns at the same time?

• Problem

• A service’s contract may not be suitable or

applicable for all of the service’s potential

consumers.

Concurrent Contracts

• Solution

• Multiple contracts can be created for a
single service, each targeted at a specific
type of consumer.

• Application

• This pattern is ideally applied together with
the Service Façade pattern to support new
contracts as required.

Singleton Design Pattern
• Problem – need to be sure there is at most one object

of a given class in the system at one time

• Solution

– Hide the class constructor

– Provide a method in the class to obtain the instance

– Let class manage the single instance

public class Singleton{

private static Singleton instance;

private Singleton(){} // private constructor!

public Singleton getInstance(){

if (instance == null)

instance = new Singleton();

return instance;

}

}

Provider Design Pattern
• Context

Separate implementations of the API from the API itself

Problem

We needed a flexible design and at the same time easily extensible

Solution

A provider implementation derives from an abstract base class, which is used to

define a contract for a particular feature.

For example, to create a provider for multiple storage platforms, you create the

feature base class RDBMSProvider that derives from a common

StorageProvider base class that forces the implementation of required

methods and properties common to all providers.

Then you create the DB2Provider, OracleProvider, MSSQLProvider, etc.

classes that derived from the RDBMSProvider.

In a similar manner you create the DirectoryStorageProvider derived from the

StorageProvider with its subclasses ActiveDirectoryProvider,

LDAPProvider, and etc.

LDAP
XML

Descriptor

LDAP
Data

Connector

RDBMS
XML

Descriptor

RDBMS
Data

Connector

Providing Access to Multiple

Data Sources via Unified API

javax.sql.DataSource interface
com.its.data.DataSource

DataConnector

getCoonnection()Adaptable Data Service for

Multiple Storage Platforms

• Multiple storage platforms can be transparent

• The same basic data operations are implemented by connectors

• Data structure and business rules are captured in XML descriptors

• Design Patterns: Model, Adapter, Provider

DataConnector

XMLdescriptor

parseXML()

get(); update();

delete(); insert();

java.sql.Connection interface

Directory

Services

XML

Descriptor

Directory

Services

Data

Connector

Authentication Service

Delegation, Façade and Provider Design Patterns

Validate

GetRoles

ChangeRoles

1. Delegation: application-specific rules are in a configuration file

2. Façade: a single interface for all applications regardless of data source

3. Provider: Works with multiple datasource providers

Active Directory, LDAP and RDBMS

Layered: separated Utility and Data Access Layers

Standard-based: Web Service and Messaging Service Standard Interfaces

Secure: Protected by HTTPS and Valid Certificates

Business

Utility Services

Data Layer Services

Authentication Service
Provider, Façade and Model Design Patterns

// read config & build application map on initiation

AppsArray[] apps = serviceConfig.getApplicationArray();

// apps maps each application to its data source(s)

--

// getRoles(appName, userName);

AuthServiceDao dao = apps.getService(appName);

// dao is one of types: LdapDao, AdDao or DbDao

String roles = dao.getRoles(userName);

How Façade Design Pattern can help us to

Improve Implementations of Internet

Services, Increase Reuse and Remove

Duplications

DB1

DB2

App1

App2

App3

App4

DB3

DB4

DB5

DB6

Multiple instances

of Customer Data

From Project-based code to Enterprise

Services using Façade Design Pattern

Customer Service

(Wrapper)

App1 App2 App3

App4 New New

More Web and Internal Applications

DB1

DB2

DB3

DB4

DB5

DB6

Multiple instances

of Customer Data

Enterprise Services will Shield Applications

and Enable Changes from current to better

Implementations

Customer Service

(Wrapper)

TPS GL Jepp.

com

eLink New New
Product Service

(Wrapper)

Subscription Service

(Wrapper)

Current

Implementations
Enterprise Services

Future

Implementations

Publish and promote

adaptation of Web

Services

Portal Services App1 App2 App3

App4

Design Pattern

Delegate
• Problem

• Business logics is often customized on

client requests creating maintenance pain

• Solution

• Delegate changeable part of business
logic to a special component, like a rules
service, and simplify changing this logic.

Design Pattern

Agnostic Context

• How can multi-purpose service logic be
positioned as an effective enterprise
resource?

• Problem

• Multi-purpose logic grouped together with
single purpose logic results in programs
with little or no reuse potential that
introduce waste and redundancy into an
enterprise.

Agnostic Context

• Solution

• Isolate logic that is not specific to one
purpose into separate services with
distinct agnostic contexts.

• Application

• Agnostic service contexts are defined by
carrying out service-oriented analysis
and service modeling processes.

Governance

Connect System and Enterprise Architectures

Connect Business and Technology Architecture

Engage Teams in Collaborative Engineering

Business requirements
Architecture Development

Management

Conduct service-oriented analysis to re-think Enterprise Architecture

SOA with TOGAF

Learn:

TOGAF Intro

TOGAF ADM Features to Support SOA

Why TOGAF & SOA?

• The Open Group Architecture Framework (TOGAF)

• TOGAF is a mature EA framework

• SOA is an architecture style

• Enterprises struggle to move to SOA

• TOGAF helps to describe EA and steps for SOA

Enterprise

Continuum

Phase A: TOGAF General Views

• Business Architecture views

• Data Architecture views

• Applications Architecture views

• Technology Architecture views

Business Architecture/Product View:

Product Lines, Products, Features

Descriptions and order terms

Data Architecture:

Standards, Repositories

Descriptions and Models

Service Views:

Business/Utility/Data Services

Descriptions and execution terms

Technology Architecture:

Platforms/Servers/Net/Security

Mapping Business and Technology Views

Business

Data

Service

Infrastructure

Business Architecture/Process View: Workflows & Scenarios

Questions?

Please feel free to email or call Jeff:

720-299-4701
Looking for your feedback: what was especially helpful and

what else you would like to know, and what are better ways to

work together in a collaborative fashion

mailto:dean@JavaSchool.com?subject=PatternsAndTOGAF

